(1)在原子干涉仪中,原子的波函数被分成左臂和右臂,然后左臂和右臂的波会重新结合,产生干涉图样;(2)在实验开始之初,原子的波函数是不受摆的影响的,这意味着原子的两臂完全相互干涉;(3)如果引力确实导致了原子和摆之间的纠缠,那么摆就会部分地测量原子的位置,将它集中在两个臂中的其中一个上;(4)在每经过半个振荡周期后,摆就会回到它的起始点,失去它所创造的引力纠缠的所有记忆,恢复干涉图样。| 图片来源:S。 Kelley/NIST 当摆动的物体经过半个周期的振荡,回到起点之时,它就失去了它所创造的引力纠缠的所有“记忆”。这是因为无论摆的摆动方向为何,它都返回到了相同的起始位置——如果最初向右摆动,它就为原子在干涉仪的右臂挑选出一出一个正确的位置;如果最初向左摆动,它就为原子在干涉仪的左臂挑出一个正确的位置。当它回到起始位置时,它为原子在左臂或右臂上选择一个位置的可能性是相同的。在那一刻,物体和原子之间的纠缠被消除,原子干涉图样重新出现。 再过半个周期,当摆再向某一边摆动时,纠缠就会重新建立,干涉图样再次减弱。随着摆的来回摆动,就会重复出现“干涉图样的出现、减弱、出现”的循环模式。研究人员认为,干涉的消失和恢复,就是证明纠缠存在的确凿证据。除了引力纠缠,其他任何现象都难以产生这样的循环。 虽然从实际操作的角度来看,完美地实现这样的实验可能需要十年或更长的时间,但初步版本或许能在几年内就能完成。比如研究人员可以利用各种“捷径”,来让观测变得更加容易。其中最大的捷径就是——去接受这样的假设,就像爱因斯坦的广义相对论一样,无论你什么时候开始实验,都应该得到相同的结果。研究人员指出,这项实验的成功必须要将所有非引力的量子纠缠考虑在内,这需要仔细的设计和测量才能排除。
|